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Abstract
We consider the classical dynamics of alkali atoms in microwave fields.
The atom is described by a simplified one-dimensional integrable model
that includes two atom-dependent parameters, σ and C. Chirikov’s overlap
criterion is applied for determining the conditions needed to produce chaotic
motion (ionization) when the atom is placed in a periodically varying
electric field. In order to test the ionization conditions we analyse the
behaviour of single classical trajectories for several values of the field strength
by numerically integrating the Hamilton’s equations. The results validate
Chirikov’s predictions for low resonances and show that the ionization process
depends on the field’s phase γ . However, by changing γ we can get physically
equivalent trajectories if we also choose the right initial conditions for the
Hamilton equations. The dynamical process along a classical trajectory is
characterized by suitable quantities and some crucial properties are exploited
for predicting ionization far before the ionization time is reached.

PACS numbers: 05.45.+b, 95.10.Fh, 11.10.Ef, 32.80.Rm

1. Introduction

Ionization of highly excited hydrogen atoms by microwave photons is one of the first
experiments in atomic physics associated to quantum chaos ([1] and references therein).
Leopold and Percival [2] were the first ones to apply a classical theory and obtain excellent
agreement with the enhanced ‘ionization’ rates reported by the Bayfield–Koch experiment [3].
Since then there have been many further experiments and calculations (for a recent review
see [4], and for the theoretical background [5–8]).

Similarly, during the last decades a considerable set of experimental data has been
accumulated in experiments on Rydberg states of alkali atoms exposed to microwave
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Table 1. Values of the parameters σ and C for the alkali atoms [16].

Atom Z − σ C

Li 1.211 1.78
Na 1.846 6.00
K 1.846 7.41
Rb 1.846 7.76
Cs 1.846 8.49

fields [9–14]. These systems, that straddle the classical-quantal border, are ideal candidates for
studying the behaviour of quantal systems which show nonlinear dynamics in their classical
limit [14, 15].

In this paper we present an one-dimensional model to describe the classical dynamics
of highly excited alkali atoms moving through a microwave cavity. Notwithstanding that the
proposed model is a simple approximation of the real physical system, it can provide useful
insights for theoretical studies of the quantum-classical correspondence in the vast area of
quantum chaos.

The model has its roots in an example treated by Eder [16]. In his book on Quantum
Mechanics, he assumes that the multi-electron three-dimensional alkali atom can be described
by considering only the outer-valency-electron motion in a spherical symmetric field generated
by the nucleus (chargeZe) and the inner electrons. Since the core is spherically symmetric, the
valence electron moves in an effective central potentialV0(r) = −(Z − σ)e2/r+Ch̄2/(2µr2),
where −e,µ, and r are charge, reduced mass, and distance electron–nucleus, respectively. The
repulsive contributionCh̄2/(2µr2) is meant to mimic the influence of the Pauli exclusion effect
and the charge repulsion between the valence electron and the electrons of the core. It is adopted
because such a potential leads to an analytically solvable eigenvalue problem, but not because
its general form is founded on any theoretical basis.

With this choice ofV0(r) the analytical solution of the radial Schrödinger equation provides
the following energy levels:

En0 � = −1

2

[
Z − σ

n0 + f (�)

]2
µ

me
ε0

where � = 0, 1, 2, . . . is the angular momentum, n0 = 1, 2, 3, . . . the principal quantum
number, me the electron’s mass, ε0 = mee

4/h̄2 the atomic energy unit and f (�) =[
(� + 1/2)2 + C

]1/2 − (� + 1
2 ). The model involves a phenomenological potential V0(r)

depending on two parameters (σ and C) that are determined by comparison of En0 � with
the alkali spectra [16]. Table 1 shows the values obtained by Eder [16] for lithium, sodium,
potassium, rubidium and caesium.

As in the microwave-ionization hydrogen problem [6, 17–19] we now introduce a one-
dimensional model for describing an alkali atom in a microwave field. Let us assume that for a
high-quantum principal number n0 and angular momentum � = 0 the unperturbed alkali atom
can be described by the one-dimensional Hamiltonian

H0(z, p) = p2

2µ
− (Z − σ)e2

z
+
Ch̄2

2µ

1

z2
= −E0 E0 > 0 (1)

where z (z � 0), p and −E0 are position, momentum and total energy of the valence electron
respectively. V0(z) has a minimum value −µ(Z − σ)2e4/(2Ch̄2) at equilibrium distance
Ch̄2/(µ(Z − σ)e2), and becomes positive for distances 0 < z < Ch̄2/(2µ(Z − σ)e2). For
the values σ = 0 and C = 0, V0(z) reproduces the potential energy of the one-dimensional
hydrogen atom.
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The alkali atom in a linearly z-polarized microwave field is then described by the
Hamiltonian

H(z, p, t) = p2

2µ
− (Z − σ)e2

z
+
Ch̄2

2µ

1

z2
− eFz sin(ωt + γ ) = H0 + V (t) e > 0 (2)

where V (t) = −eFz sin(ωt + γ ) is the interaction energy between the electron and the
microwave field characterized by angular frequency ω and amplitude F . Here γ is a free
parameter that gives the phase of the field.

The Hamiltonian (2) offers a simple one-dimensional model system for testing classical
chaos features. The electron, initially bounded by the potential V0(z), undergoes a transition
to chaos under the influence of a periodic external electric perturbation V (t). However, it is
worth noting that the model (2) has a set of limitations. For example, it does not consider the
angular motion of the Rydberg electron and the anisotropy of the core with non-zero angular
momentum. The presence of core anisotropy can produce quadrupole moment and tensor
polarizability interactions which cause energy levels to split. The spin of the active electron
is also ignored, but it could be justified considering that the core’s electrons and the high-n0

active electron are confined to well separated regions of space, which eliminates short-range
interactions such as exchange and partial screening of the nuclear charge.

In this paper we study the classical dynamics of ionization phenomenon. We first solve
Hamilton equations derived from the unperturbed Hamiltonian (1) using action-angle variables
(section 2). We then consider the alkali atom in the presence of the microwave field and apply
Chirikov’s criterion [20–22] to determine the critical electric-field strengths at which ionization
(chaos) will occur (section 3). In section 4 we numerically solve Hamilton equations obtained
from the full Hamiltonian (2). We validate Chirikov’s criterion and characterize the dynamics
of the ionization process by introducing suitable quantities, including the electron energy
change due to the perturbation V (t). We also exploit some crucial properties for predicting
ionization far before the ionization time is reached. In section 5 we present some conclusions.

2. Dynamics of the unperturbed system

We consider the unperturbed alkali atom described by the Hamiltonian (1) and seek a canonical
transformation connecting position and momentum (z, p) with action-angle variables (θ, I ).

The valence electron with energy −E0 has turning points z0 and z1 (z0 < z1 ) given by

z0 = a

b +
√
b2 − a

z1 = a

b − √
b2 − a

(3)

with

a := Ch̄2

2µE0
= z0z1 b := (Z − σ)e2

2E0
= 1

2
(z0 + z1). (4)

The momentum p of the electron can be written as

p(z) = ± (2µE0(z− z0)(z1 − z))1/2

z
(5)

where, by convention, the upper sign stands for motion from z0 to z1 with p(z) � 0, and the
lower sign for motion from z1 to z0 with p(z) � 0. The momentum |p(z)| exhibits a maximum
at distance zm = 2z0z1/(z0 + z1).

In the case of one-dimensional hydrogenic atoms (C = 0, σ = 0), the electron reverses its
momentum abruptly at z = 0. Therefore, we must set z0 = 0 and z1 = 2b which simplifies (5)
to p(z) = ±(2µE0(z1 − z)/z)1/2. The momentum |p(z)| becomes infinity at the origin,
zm = 0.
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In terms of the canonical-action variable

I = 1

2π

∮
p dz = 1

2π

{ ∫ z1

z0

p+ dz +
∫ z0

z1

p− dz

}
= (µE0/2)1/2

(√
z1 − √

z0
)2

the unperturbed Hamiltonian (1) becomes

H0(I ) = −E0 = −µ

2

(
(Z − σ)e2

I + I∗

)2

(6)

with I∗ = h̄C1/2. Note that equation (6) reproduces the quantum spectrum of alkali atoms
(see introduction) if we set (I + I∗)/h̄ = n0 +

(
(� + 1/2)2 + C

)1/2 − (� + 1/2), where n0 and
� = 0 are the principal and angular-momentum quantum numbers. In comparison with the
hydrogenic case (C = 0, I = n0h̄), the non-vanishing parameter C > 0 in the alkali atoms
yields a shift in the linear relation between action I and principal quantum number n0, namely
I = (n0 −NC)h̄, whereNC := (1/2+C1/2)− (1/4+C)1/2 > 0 is an atom-dependent constant
(see table 1). The parameter NC increases from N0 = 0 to N∞ = 1/2.

From the Hamilton equation dθ/dt = ∂H0(I )/∂I , the solution for the angle variable can
be expressed as

θ(t) = θi + #(I)(t − ti) (7)

where #(I) := ∂H0/∂I defines the nonlinear characteristic frequency of the system

#(I) = µ

(Z − σ)e2

(
(Z − σ)e2

I + I∗

)3

= 2(2E0/µ)
1/2

z0 + z1
. (8)

In (7) θi = θ(ti) is an integration constant. We set z(t0) = z0 and θ0 = θ(t0) for motion from
z0 to z1, and z(t1) = z1 and θ1 = θ(t1) for motion from z1 to z0.

Now, the Hamilton equation µ dz/dt = p implies

z dz√
(z− z0)(z1 − z)

= ±
(

2E0

µ

)1/2

dt.

Integration of this equation yields

t − ti =
(

µ

2E0

)1/2 {
∓1

2
(z1 − z0) sin ϕ +

1

2
(z1 + z0)ϕ

}
ϕ ∈ [0, π ] (9)

where ϕ is an auxiliary variable defined by

ϕ = arccos

{
±z1 + z0 − 2z

z1 − z0

}
ϕ ∈ [0, π ]. (10)

By substituting (9) in (7) and using (8) we get

θ = θi ± c0(I ) sin ϕ + ϕ (11)

where we define

c0(I ) := z1 − z0

z1 + z0
=

[
1 −

(
I∗

I + I∗

)2
]1/2

. (12)

For alkali atoms z0 
= 0 and I∗ 
= 0, hence 0 � c0(I ) < 1. For hydrogenic atoms z0 = 0,
I∗ = 0 and c0(I ) = 1. Hereafter, in order to simplify the equations we will write c0 instead of
c0(I ).

Equation (9) implies t1 = t0 + (µ/(2E0))
1/2 (z1 + z0)π/2. As a consequence, the

characteristic period of the unperturbed motion is

T =
(

µ

2E0

)1/2

(z1 + z0)π. (13)
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From (11) we obtain θ1 = θ0 + π , that is, the angular variable θ has initial value θ0 and period
2π . By using (10) and (11) we find the relation

z = 1
2 (z1 + z0) (1 ∓ c0 cosϕ) ϕ ∈ [0, π ]. (14)

Replacement of this equation in (5) yields

p = ±(2µE0)
1/2 c0 sin ϕ

1 ∓ c0 cosϕ
ϕ ∈ [0, π ]. (15)

Equations (14) and (15) specify the valence electron trajectory in terms of the parameter ϕ ∈
[0, π ]. They also define, through (11) and (12), the canonical transformation (z, p) → (θ, I )

that provides the relation with θ and I variables. Note that (14) and (15) can be written as
z = 1

2 (z1 + z0) (1 − c0 cosϕ) and p = (2µE0)
1/2(c0 sin ϕ)/(1 − c0 cosϕ) for ϕ ∈ [0, 2π ].

3. Chirikov’s condition for ionization

In this section we transform the full perturbed Hamiltonian (2) to action-angle variables (θ, I )
and determine the analytical expression for the critical electric-field amplitude according to
Chirikov’s overlap criterion. We start by writing the interaction potential V (t) as

V (t) = −b(I )eF (1 − c0 cosϕ) sin(ωt + γ ) e > 0 ϕ ∈ [0, 2π ] (16)

where, according to (4) and (6),

b(I ) = 1

2
(z0 + z1) = (I + I∗)2

µ(Z − σ)e2
.

As we already quoted the angle variable θ has initial value θ0 and period 2π . Since ϕ = ϕ(θ)

and cosϕ(θ) are periodic functions of θ we can use the expansion [23]

cos(ϕ(θ)) =
∞∑

n=−∞
an exp(inθ) (17)

with coefficients

an = 1

2π

∫ θ0+2π

θ0

cos(ϕ(θ)) exp(−inθ) dθ.

We can separate the contributions of intervals θ0 � θ � θ1 and θ1 � θ � θ0 + 2π , apply (11)
to change the integration variable from θ to ϕ, and use Bessel’s integrals [24]

Jn(x) = 1

π

∫ π

0
cos(nϕ − x sin ϕ) dϕ

= x

nπ

∫ π

0
cosϕ cos(nϕ − x sin ϕ) dϕ n integral (18)

to obtain

an = exp(−inθ0)
1

n
J ′
n(nco) (19)

where J ′
n(x) is the x-derivative of the integral Bessel function (18).

From (17) and (19) equation (16) yields

V (t) = −b(I )eF
∞∑

n=−∞
{A(n, co)− δn0} exp{−in(θ − θ0)} sin(ωt + γ ) (20)

where δn0 is the Kronecker delta and the coefficients A(n, c0) are defined by

A(n, c0) = c0(I )

n
J ′
n(nc0(I )). (21)
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It follows from (21) and by differentiation of (18) that A(n, c0) = A(−n, c0). Thus, we
can write the full time-dependent Hamiltonian (2) in terms of the unperturbed action-angle
variables as follows:

H(θ, I, t) = H0(I )− b(I )eF
∞∑

n=−∞
{A(n, co)− δn0} sin {n(θ − θ0)− (ωt + γ )} . (22)

This yields an infinite superposition of rotating sine potentials indexed by the integer n.
An interesting remark concerning the coefficient A(n, c0) is adequate at this point. We

recall the integral representation [25]

J ′
n(N) = 1

2π i

∫ ∞+π i

∞−π i
F(u, α) exp(NF(u, α)) du

where the parameter c0 is written as c0 = sech α, with α � 0, N := nc0 = n sech α
and F(u, α) := sinh u − u cosh α. The values u±(α) = ±α are saddle-points at which
∂F/∂u vanishes. They coalesce as c0 → 1. Then, if n → ∞ and 0 < c0 < 1 the main
contribution comes from the two saddle-points ±α. When c0 = 1 only the stationary point
α = 0 contributes. Applying the method of asymptotic expansion as described in [26], we could
derive an asymptotic expansion of J ′

n(nc0)which would be uniformly valid in a neighbourhood
around the exceptional value of c0. This might allow us to simultaneously study alkali and
hydrogenic atoms.

Let us now consider Chirikov’s overlap criterion for determining the critical electric-field
values that allows ionization through resonance overlaps. This criterion postulates that ‘the last
KAM surface between two lowest-order resonances is destroyed when the sum of half-widths
of the two island separatrices formed by the resonances, but calculated independently of one
another, just equals the distance between resonances’ [22]. To apply this criterion, we first
determine the position and separation of resonances recalling first-order perturbation theory
and consider the dynamics in the neighbourhood of a primary resonance to determine its width.

When the interaction potential V (t) is a perturbation for the system described by H0, the
solution of Hamilton equations derived from (22) is sought in the form [22] I = I (0)+εI (1)+· · ·
and θ = θ(0)+εθ(1)+ · · ·. The solution of the unperturbed system studied in section 2 yields the
zero-order approximation. That is, I (0) = I = constant and θ(0) = θ(t) = #(I)(t − t0) + θi.
The singularities obtained from first-order approximation (θ(1), I (1)) define the resonance
condition n#(I)− ω = 0.

From this and (8) we find that resonances occur for the set of actions

In =
{nµ
ω
(Z − σ)2e4

}1/3
− I∗ n = ±1,±2,±3, . . . . (23)

So, the separation between two consecutive resonant actions is

δn := In+1 − In = [µ
ω
(Z − σ)2e4

]1/3 [
(n + 1)1/3 − n1/3

]
. (24)

We observe that separation between resonant actions decreases as n growths and becomes
δn ≈ (In + I∗)/(3n) for large n. Equation (24) indicates that for a fixed value of ω the distance
δn increases with the value of the effective charge (Z− σ)e of the core (alkali atoms) or of the
atomic nucleus (hydrogen-like atoms, σ = 0).

Given one resonant action, from (6) and (23) we obtain the corresponding absolute values
of the unperturbed energies

E0,n = µ

2

[
ω

nµ
(Z − σ)e2

]2/3

. (25)

Following the main idea used to analyse resonances [20], in phase-space regions where the
action variable I is very close to the resonant action In the perturbation effect is dominated
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by the corresponding term in expansion (22). In other words, in the neighbourhood of one
particular n-primary resonance the dynamics behaviour of the system is governed by the
Hamiltonian

H(θ, I, t) = H0(I )− b(I )eFA(n, c0) sin {n(θ − θ0)− (ωt + γ )} . (26)

Restricted to the neighbourhood of each primary-resonance we can define the canonical
transformation (θ, I ) → (/,0I)with0I := I−In and/ = θ−θ0 −(ωt+γ )/n. Expanding
the image of Hamiltonian (26) in a 0I series up to second order for H0 and first order for the
interaction term, we obtain the following approximation:

H̃ = − (0I)2

2M
− U0 sin(n/) (27)

with

U0(In) = b(In)eFA(n, c0(In))
1

M
= 3µ

(Z − σ)2e4

(In + I∗)4
= 3

#(In)

In + I∗
.

Here#(In) is the nonlinear characteristic frequency of the system defined by (8). Since (27) is
similar to the Hamiltonian of the nonlinear pendulum [7,20] with small frequency oscillations
ω̃2

0 := U0(In)/M , it gives the pendulum approximation for alkali atoms.
From (27), the pendulum resonance width in I , given by the width of the trapping

(libration) region of the pendulum [21], is

Wn = 4 (|M|U0(In))
1/2 = 4(In + I∗)3

[
eFA(n, c0)

3µ2[(Z − σ)e2]3

]1/2

. (28)

According to Chirikov’s criterion [20, 22], all KAM surfaces between n and (n + 1)
resonances are destroyed when (Wn+1 + Wn)/2 = g δn , where g = 1 when only overlaps
between primary resonances are considered. In some systems, such as H-atom ionization by
circularly polarized microwave fields [27,28], the presence of higher-order resonances is taken
into account heuristically by the two-thirds rule, g = 2/3.

From the above condition and equations (28) and (24) we obtain the following expression
for the critical values of the electric field:

F cr
n = g2 3

[
ω4µ2(Z − σ)e2

]1/3

4e

{
(n + 1)1/3 − n1/3

(n + 1) [A(n + 1, c0)]
1/2 + n [A(n, c0)]

1/2

}2

. (29)

From (6) and (25) it is seen that the required unperturbed energy H0(In) = −E0,n to
prepare the valence electron in the n-primary resonance increases with n. So, one expects that
the strength of the critical electric field required to ionize an alkali atom decreases with n. This
is corroborated by (29) as illustrated in table 2. Therefore, according to Chirikov’s criterion,
if we prepare the valence electron with a given initial energy −E0,n and apply a microwave
field F � F cr

n , the electron can reach the next resonance zone in phase space. Since the field
amplitude is larger than that required for the overlapping of higher resonance zones, all KAM
surfaces are destroyed and the electrons gradually can reach higher resonance regions, hence
ionization induced by chaos should occur.

On the other hand (see text after equation (6)), from the relation In = (n0 −NC)h̄ we can
estimate the principal quantum number n0 corresponding to the resonant energy −E0,n . It is
given as the integer part of (with � = 0)

n0 = (Z − σ)e2

h̄
√−2E0,n/µ

−
(

1

4
+ C

)1/2

+
1

2
. (30)

Some particular values of n0 for lithium are listed in table 3.
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Table 2. Critical electric-field amplitude for the first seven resonances, with ω = 1.509×10−6 au,
and g a parameter (see text after equation (28)).

Fcr
n /g

2

(×10−10 au) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Lithium 6.085 57 2.353 81 1.294 14 0.834 20 0.589 38 0.442 10 0.345 93
Sodium 7.003 75 2.708 95 1.489 40 0.960 06 0.678 30 0.508 81 0.398 12

Table 3. Approximated principal quantum number n0 corresponding to the resonant energy E0,n
for lithium.

Resonance n = 1 n = 2 n = 3 n = 4 n = 10 n = 20 n = 30

−E0,n 747.353 470.803 359.29 296.587 161.012 101.431 77.4066
(×10−7 au)
n0 98 123 141 156 212 267 306

4. Dynamics of the classical-ionization process

In this section we study the system’s dynamics for several primary resonances (n = 1, 2, 3, 4)
and different values of the electric amplitude F . To do this, we compare Chirikov’s values
of the electric field (29) with the numerical results for the classical onset of chaotic motion,
which are obtained by scanning F and numerically solving the Hamilton equations derived
from the full Hamiltonian (2).

For a suitable value of F the electron’s classical trajectory is chaotic and, therefore, there
is ionization for a sufficiently large finite time, tI. We introduce basic quantities to characterize
the ionization process and propose a method for predicting ionization far before the ionization
time tI is reached. We also explore the role of the microwave field’s phase γ in this process
and introduce the concept of physically equivalent trajectories.

The starting point is given by the Hamilton equations derived from the full Hamiltonian (2),
which describe the evolution of the valence electron in the microwave field:

dz

dt
= p

µ

dp

dt
= −(Z − σ)e2 1

z2
+
Ch̄2

µ

1

z3
+ eF sin(ωt + γ ). (31)

If we turn on the microwave field of frequency ω and amplitude F at time t0, when the
electron energy is H0(z, p, t0) = −E0, a measure of the electron-energy change due to the
interaction of the atom with the periodic electric field is given by

ε(t) := H0 (z(t), p(t), t)

E0
. (32)

From the time-derivative of this equation and using Hamilton equations (31) we find that ε(t)
changes according to

ε(t) = −1 +
eF
µE0

∫ t

t0

dt ′p(t ′) sin(ωt ′ + γ ). (33)

In the limit t → ∞, the integral of the right-hand side becomes the Fourier transformation of
momentum p(t). Therefore, the power spectrum of p(t) could be used to distinguish periodic,
quasiperiodic and chaotic motion [29].

For studying the ionization process we prepare the electron at an energy −E0.n, and fix
the field amplitude F , the frequency ω and the phase γ . For each resonance (n = 1, 2, 3, 4)
we characterize the different values of the electric-field amplitude F by a factor r := F/F cr

n ,
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where F cr
n is the Chirikov’s critical electric-field amplitude obtained from (29) with g = 1 (see

also table 2). Hereafter, we denote by rcr
n the minimum value of r for which we have obtained

ionization at the n-primary resonance.
We also introduce the scaled variables Q = z/Q0, P = p/P0, and τ = t/T0,

where (Q0, P0, T0) are free parameters. Thus, the image Hamiltonian K(Q,P, t) =
[T0/(Q0P0)]H(QQ0, PP0, τT0) leads to the Hamilton equations

dQ

dτ
= c1P

dP

dτ
= −c2

(Z − σ)

Q2
+ c3

C

Q3
+ c4F sin(ωT0τ + γ ) (34)

with

c1 := T0P0

µQ0
c2 := T0e

2

Q2
0P0

c3 := h̄2T0

µQ3
0P0

c4 := T0e

P0
.

Hydrogenic atoms (σ = 0, C = 0) obey classical scaling. Therefore, a standard selection is
Q0 = n2

0, P0 = n−1
0 and T0 = n3

0 . Here the dimensionless parameter n0 is related to the initial
classical principal action In and semi-classical quantization yields In = h̄n0 [1].

In the case of alkali atoms the potential energyV0(z) in (1) is a non-homogeneous function,
hence H0(z, p) is not scalable. Then, for numerical calculation and plots we set (Q0, P0, T0)

in terms of characteristic properties of the unperturbed system (electric amplitude F = 0),
namely Q0 = z1 − z0, T0 = T/2 and P0 = µQ0/T0.

We use the NDSolve package [30] with AccuracyGoal of 16, PrecisionGoal of 16 and
WorkingPrecision of 24, to numerically solve the Hamilton equations (34) for the first four
resonances of lithium and a microwave-field frequency ω = 1.509 × 10−6 au.

4.1. Characterization and prediction of ionization for a single trajectory

In the ionization process the atom is excited by the interaction V (t) to progressively higher
energies and after a large enough time tI (tI > t0) the motion becomes unbounded. That is,
for all time t > tI the position grows indefinitely, and the momentum p(t) and the energy ε(t)
become positive (z(t) > 0, p(t) > 0, ε(t) > 0). The ionization time of the system, along
the trajectory under consideration, is the minimum value of tI after which these conditions
are permanently met. Since the electromagnetic field transfers energy to the electron, or takes
energy from it, the energy ε(t) can oscillate over a finite time interval, but if ionization has
been achieved the sign of the energy must be positive for all t > tI.

Preparing the lithium atom with initial energy −E0,1 corresponding to the first primary
resonance (n = 1), we obtain ionization for electric-field amplitudes characterized by r � 1.
Figure 1 illustrates the ionization process for F = F cr

1 = 6.08 557 × 10−10 au (r = 1) when
the initial values of position and momentum correspond to the internal turning point and the
initial phase of the microwave field is γ = 5π/4. Figures 1(a)–(c) show the time behaviour
of ε(τ ), Q(τ) and P(τ), respectively, while figure 1(d) depicts the points of the trajectory at
regular time intervals given by 0τ = 10 (0t = 10T0).

We observe in figures 1(a) and (e) that ε(t) presents an energy-level jump structure which
is more defined as the electron reaches higher energies. As expected, the jump actually
occurs when the electron reaches the nearest distance to the core and collides with it (compare
figures 1(a) and (b) for example at τ ∼= 400 and τ ∼= 650). Since the energy scale is different
for each resonance, E0 = E0,n in (32), the range values of ε at which this structure clearly
appears are lower for higher resonances (see table 3). At high energies the movement of the
electron between jumps follows a closed trajectory modulated by the field but when the final
jump takes place the electron acquires enough energy to ionize and to follow an open trajectory.
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Figure 1. Lithium ionization at first primary resonance (n = 1) for microwave-field frequency
ω = 1.509 × 10−6 au, initial phase γ = 5π/4 and electric amplitude F = 6.085 57 × 10−10 au
(rcr
n = 1.0): (a)–(c) show the time behaviour of ε(τ ),Q(τ) and P(τ), respectively: (d) Depicts the

phase-space trajectory: (e) and (f ) show energy and trajectory behaviours for large times confirming
the ionization process.

Since the electron absorbs energy from the field mainly when a jump occurs we can use
this fact to predict ionization far before the ionization time tI is reached for those cases when
ε(t) takes positive and negative values but oscillates near ε = 0. On this stage we define a
time interval ta < t < tb and evaluate the time average of the energy

〈ε〉 (ta, tb) := 1

tb − ta

∫ tb

ta

ε(t ′) dt ′ = ε(ta) + 0ε(ta, tb) (35)



Ionization of alkali atoms 8111

660 670 680 690 700 710
τ

-.08

-.06

-.04

-.02

.02

.04

ε(τ)
(a)

5 10 15 20

.001

.002

.003

.004

.005

<ε>m

<ε>(ta , ta+mT)

(b)

m

250 260 270 280 290 300

-.15

-.1

-.05

.05

ε(τ)

τ

(c)

5 10 15 20

-.0004

-.0002

.0002

.0004 <ε>m

<ε>(ta , ta+mT)

m

(d)

Figure 2. An electron’s dynamical behaviour after the last jump in the case of the first resonance
(n = 1), with the same initial conditions of figure 1 but different field phases: (a) γ = 5π/4, (c)
γ = (5π/4) + 0.06. Figures (b) and (d) depict the behaviour of 〈ε〉 (ta, ta + mT ) and 〈ε〉m during
the first 20 field cycles (m = 1, 2, 3, . . . , 20) starting from ta .

where the net change of energy between ta and tb is given by

0ε(ta, tb) := eF
µE0

1

tb − ta

∫ tb

ta

dt ′
(
tb − t ′

)
p(t ′) sin

(
ωt ′ + γ

)
. (36)

〈ε〉 (ta, tb) gives the ‘algebraic energy’, counting energy as positive if ε(t ′) > 0 and as negative
if ε(t ′) < 0. Since tb − t ′ > 0, when p(t ′) > 0 the algebraic contributions to the integral (36)
are determined exclusively by the function sin(ωt ′ + γ ).

Ionization prediction. Let ta be the time at which the electron reaches the nearest distance to
the core in the supposed last jump, tb = ta + mT , and 〈ε〉m := 〈ε〉 (ta + (m− 1)T , ta + mT ),
where T = 2π/ω is the period of the field and m labels a set of time intervals (m =
1, 2, 3, . . . ,M). The atom will ionize if the classical trajectory of the active electron holds the
following two properties: the time average of the energy in the interval ta < t < tb is greater
than zero (〈ε〉 > 0) for all tb > ta and 〈ε〉m+1 −〈ε〉m > 0 for allm. The last condition indicates
that the electron is absorbing energy from the field and that for successive cycles the negative
contributions of ε(t) are decreasing.

Figure 2 illustrates the application of the above statement by comparing the ionization
process of figure 1 with a non-ionization process. Figure 2(a) is a magnification of figure 1(a)
after the last jump while figure 2(c) shows the behaviour of ε(τ ) after the last jump for the same
resonance (n = 1) but with a slightly different initial phase. The numerical calculations show
that in case (c) there is no ionization before τ = 8000, when the momentum has already taken
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negative values. The corresponding behaviours of 〈ε〉m and 〈ε〉 (ta, ta + mT ) are depicted in
figures 2(b) and (d). We recall that the electron absorbs energy from the field mainly during the
first cycles. However, only in case (b), when the atom will ionize, it holds that 〈ε〉m+1−〈ε〉m > 0
and 〈ε〉 (ta, ta + mT ) > 0 for any m = 1, 2, . . . , 20. That is, only in case (b) the absorbed
energy from the field (0ε in equation (35)) is enough in order for 〈ε〉 (ta, t) to become positive
for t > ta .

The above property is useful since we can predict ionization by analysing the energy
behaviour in the time interval ta < t < tb, far before the ionization time tI. In this way we
can avoid long calculations by ending them at tb � tI. For example, in figures 1(a) and (c) we
find τa

∼= 656 (ta
∼= 656T0) but the figure 1(e) shows that the ionization time could be around

tI
∼= 2300T0. The last figure includes calculations in the interval τ ∈ [0, 3000] in order to

confirm the fulfilment of the ionization conditions.
In the case of second, third and fourth resonances (n = 2, 3, 4)we observe similar general

behaviour to that obtained for n = 1. With the precision and accuracy already quoted, and
the initial phases γ = 5π/4 and 3π/2, and τ <≈ 3000, we find the following critical values:
rcr

1 = 1.0 ± 0r , rcr
2 = 1.1 ± 0r , rcr

3 = 1.2 ± 0r , and rcr
4 = 1.4 ± 0r (0r = 0.05). In

all cases rcr
n � 1 and this value increases with n. That is, ionization at Chirikov’s critical

electric amplitude F cr
n with g = 1 is obtained only for the first resonance. Clearly the two-

thirds heuristic rule does not improve in our case the prediction of the critical electric fields.
Figures 3(a)–(d) show the behaviour of the ionization process for the electric-field amplitudes
corresponding to these rcr

n critical values (n = 1, 2, 3, 4).

4.2. The role of the microwave-field γ phase

We observe a strong dependence between the dynamical behaviour of the electron and the
value of the field’s phase γ . As an example, figure 4 shows that the initial behaviour of ε(τ )
and the ionization time τI depend on the value of γ . In all the cases shown in this figure
(γ = 3π/2, 5π/4, π, 3π/4, π/2, π/4), the field is turned on at τ0 = 0, the initial energy of
the electron is −E0,1, the electric-field amplitude corresponds to r = 5, and the initial position
and momentum are Q(0) = z0, P(0) = 0.

However, the corresponding trajectories are not physically equivalent. Actually, for some
values of γ (5π/4, π, π/4) there are ionization while for other values of γ (3π/2, 3π/4, π/2)
the electron remains bounded. As we show below, the variation of γ is physically equivalent
to change the initial surface energy, below or above −E0,1. This change increases with the
intensity of the applied microwave field.

The phase dependence of the ionization can be understood by applying to (34) the time
transformation τ̃ := τ + τγ , with τγ := γ /(ωT0), and introducing the new dependent
variables, Q̃(τ̃ ) := Q

(
τ̃ − τγ

)
and P̃ (τ̃ ) := P

(
τ̃ − τγ

)
. The resulting equations of

motion for (Q̃(τ̃ ), P̃ (τ̃ )) become independent of the parameter γ ; hereafter they will be
referred as (34)γ=0. Since the initial conditions are fixed at the times τ̃0 and τ0, respectively,
and τ̃0 := τ0 + τγ , the set of equations (34)γ=0 is physically equivalent to the original
one (34) if the initial conditions are connected by Q̃(τ̃0) = Q(τ0) and P̃ (τ̃0) = P(τ0).
For example, Q̃(τγ ) = Q(0) and P̃ (τγ ) = P(0) or Q̃(0) = Q(−τγ ) and P̃ (0) =
P(−τγ ).

As a consequence of the above considerations we conclude that the trajectories
(Q(τ), P (τ))γ , which correspond to the calculations of ε(τ ) shown in figure 4 for several
values of γ , are not physically equivalent to each other. In fact, the phase γ induces changes
on the dynamical behaviour of the electron and depending on the value of γ the active electron
remains bounded or ionizes.
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Figure 3. Lithium ionization at (a) first, (b) second, (c) third and (d) fourth primary resonances
with microwave-field frequency ω = 1.509 × 10−6 au and electric-field amplitudes corresponding
to critical values rcr

1 = 1.0 (F = 6.085 57 × 10−10 au), rcr
2 = 1.1 (F = 2.5892 × 10−10 au),

rcr
3 = 1.2 (F = 1.552 97 × 10−10 au) and rcr

4 = 1.4 (F = 1.167 88 × 10−10 au). The microwave
field’s phase γ is: for (a), (c) and (d), γ = 5π/4, and for (b), γ = 3π/2.

Note that in order to obtain physically equivalent trajectories with different values of γ
there is at least two possible procedures. The first one requires one to start the integration
of (34)γ=0 at the initial time τ̃0 = τγ , instead of τ̃0 = 0, and fix (Q(0), P (0)) as the initial
phase-space point of the trajectory. In this case the initial energy of the electron is the energy
−E0,n of the nth primary resonance (n = 1 in the case of figure 4).

In the second procedure we choose as the starting point of (34)γ=0 the time τ̃0 = 0.
However, the initial condition (Q̃(0), P̃ (0)) must be initially determined by time evolution
of the point (Q(0), P (0)) backwards to the time −τγ . This is done using (34) that describes
the full perturbed alkali atom in the microwave field with phase γ . As a consequence of this
backward time evolution the energy of the active electron changes and, therefore, the initial
energy for (34)γ=0 at initial time τ̃0 = 0 is different to the nth primary resonance energy −E0,n.

As an example, figure 5 shows the points (Q(−τγ ), P (−τγ ))γ at which the trajectories
have to be launched at τ̃0 = 0 in order to obtain physically equivalent trajectories for the
values of γ considered in figure 4. For γ = 3π/2 the point lies below the first resonance,
for 5π/4 and π/4 the points are near before and near after the first resonance but above
the second resonance, and for π , 3π/4 and π/2 the points are above the second resonance.
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Figure 4. Dynamical dependence of ε(τ ) with microwave field’s phase γ for the first resonance
(n = 1), microwave-field frequency ω = 1.509 × 10−6 au and electric-field amplitude F =
3.042 78 × 10−9 au (r = 5.0). The values of γ are specified in the figures.

Note in figure 5 that in some of these cases (γ = π, 3π/4, π/2) the new initial energy is now in
the neighbourhood of the second primary resonance (−E0,2) instead of the first one (−E0,1).

In conclusion, in the first procedure the effect of γ is equivalent to the standard
interpretation of turning on the field at a time τγ while the electron remains at the same
phase space point of the chosen resonant energy surface −E0,n. The second procedure is
equivalent to turning on the field at τ0 = 0 but the electron must be initially localized on a
higher or lower energy surface than the resonant one, −E0,n. In this case the position of the
point depends on the field intensity and the phase γ . We point out that, in accordance with the
second interpretation, the values of γ used for figure 3 assure that the electron is initially in
the vicinity of the unperturbed resonant energy surface −E0,n, with n = 1, 2, 3, 4.



Ionization of alkali atoms 8115

0.5 1 1.5

-4

-2

2

3pê2

5pê4

p
3pê4pê2

pê4

Q(τ)

P(τ)
n = 1,   r = 1

Figure 5. Initial phase-space points determined by backward time evolution from (Q(0), P (0)) to
(Q(−τγ ), P (−τγ )) for the different values of γ considered in figure 4. These initial conditions,
the initial time τ̃0 = 0, and (34) at γ = 0 allow one to calculate physically equivalent trajectories
corresponding to the cases treated in figure 4 (n = 1, r = 5). The background curves are phase-
space trajectories for the unperturbed atom at energies of −E0,1 and −E0,2.

To end this section we present in figure 6 the structure of the phase space for the first
resonance (n = 1), at Chirikov’s critical field r = 1 and for the values of γ considered in
figure 2 (5π/4, 5π/4 + 0.06). The Poincaré surface of sections in action-angle variables,
θ(mT ) − I (mT ), are generated with approximately 100 trajectories and each trajectory
contributes with 400 thin points (m = 1, 2, . . . , 400); T is the period of the field. For both
values of γ the global structure of the phase space looks alike, but there is a small shift in the
angle variable θ , a weak distortion of the tori and some resonances are more notorious for the
case of γ = 5π/4 + 0.06.

We superpose to each Poincaré section a set of thick points which are generated by the
contribution of the same single trajectory considered in figure 2, with initial condition (z0, 0)
and first-resonance energyE0 = 7.473 526 7435 10−5 au. Whenm augments the representative
point jumps from here to there, up and down.

The main effect of changingγ is a modification in the behaviour of the embedded trajectory.
For γ = 5π/4 + 0.06 the representative point visits the region in the vicinity of the first
resonance more frequently and, therefore, generates nearby it a high density of thick points.
When γ = 5π/4 the visited region in the neighbourhood of the first resonance is wider and
the density of the thick points is lower. In this case, when m augments, the action I (mT )

progressively has a net increase and the trajectory finally ionizes at a time tI far beyond the 400
periods used for doing the Poincaré surface of the section (see figures 1 and 2). In the other
case (γ = 5π/4 + 0.06) the calculations show that there is no ionization.

5. Conclusions

We have successfully applied a simple one-dimensional model to study the classical dynamics
of alkali atoms under microwave fields, which allows an explicit visualization of the classical
ionization process induced by chaos. Regular or chaotic motion of the valence electron is
observed depending on the values of the perturbation parameters, namely, frequency and
electric-amplitude of the microwave field.
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Figure 6. Poincaré surface of sections for the two values of γ considered in figure 2 which
correspond to an ionization case (γ = 5π/4) and a non-ionization process (γ = 5π/4 + 0.06). In
each figure, the thick points represent the contribution of a single trajectory with initial condition
(z0, 0) and first-resonance energy, which has been superposed onto the Poincaré section surface
(thin points).

We have used Chirikov’s overlap criterion to estimate the critical electric-field amplitude at
which ionization occurs and have tested this prediction by integration of Hamilton equations.
The obtained numerical values for the critical electric field-amplitude validate the order of
magnitude of Chirikov’s predictions for low resonances and show that Chirikov’s original
approach (g = 1) is, in this case, superior to the two-thirds heuristic rule.

We have shown that ionization dynamics for a single trajectory depends on the γ phase.
The results show that by changing γ we can obtain physically equivalent trajectories if the
field is turned on at τ = 0 and the electron is initially localized on a suitable energy surface
different to the resonant one, −E0,n.
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In some cases, depending on the system’s parameters, the ionization time tI is too large
and in principle a large amount of computational effort is required. Similarly, when ε(t) is
oscillating near over ε = 0 but the trajectory does not ionize, the electron remains trapped by
the core potential during a thousand field cycles on a very long closed trajectory. For both cases
and by using some basic ideas we developed a method for predicting ionization far before the
time tI is reached. This is a very useful technique that avoids long calculations involving the
numerical integration of Hamilton equations.

Let us conclude this section with some comparisons between hydrogen-like atoms and
alkali atoms. The Hamiltonian (2) with C 
= 0 is not invariant with respect to scaling
transformations, unlike (2) for hydrogenic atoms (C = 0, σ = 0). Thus, the ionization-
threshold when C 
= 0 depends on three independent variables (E0, ω,F). In the case of
hydrogenic atoms, to the contrary, the ionization threshold depends on two scaled variables:
the scaled frequency ω̃ := n3

o ω and the scaled amplitude F̃ := n4
o F .

A final noteworthy difference between hydrogenic and alkali atoms is that the former
parameter z0 in (3) vanishes causing a singularity at z = 0 in Hamilton’s motion equations (31).
To avoid this singularity special variables or procedures are needed to deal with it. In the case
of alkali atoms C > 0, the turning point z0 is positive and the inequality z0 > 0 defines a
singularity-free motion region.
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